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Introduction
Some of the most interesting times in physics come from the comparison of 
precise theoretical predictions with careful experimental measurements.  

While this connection is essential to physics, we generally would like to keep 
measurements purely observational and free of theoretical input. 

• eg, we can relate an observed number of events within some kinematic 
region to a fiducial cross-section 

• this measurement is independent of precision of theoretical prediction 

• in contrast, to measure a total cross-section we must correct for the efficiency and 
acceptance in the fiducial region, which relies on theoretical input 

This situation is complicated when the physical quantities of interest require 
multiple measurements with correlated experimental and systematic 
uncertainties. It is no longer obvious how to decouple theoretical input from 
the measurement 

• this situation is exacerbated by uncertainties in the theoretical inputs 

• with time the theoretical uncertainties may be reduced, so ideally the experimental 
results would be presented in a way that is still useful at that time
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A source of confusion
It is important to distinguish between the source of an uncertainty 
(parametrized by α) and its effect on the expected signal and 
background s(α) and b(α), which may be a complicated function 

• example:  
• source = uncertainty in energy calibration for jets 
• effect = change efficiency to pass Ejet> 20 GeV cut 

• example:  
!
• source = missing higher order corrections in differential cross section prediction 
• effect = change expected number of events and distributions 
!

In addition, we must characterize the magnitude  
of uncertainty in the source through some  
prior distribution (“constraint term”) f(α) 

• but theory uncertainties are not statistical 
• choice is controversial 
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Figure 2: Numerical estimates of the exact densities f(�k|c0, . . . , ck) (continuous curves) and their
analytical approximations in eq. (34) (dashed curves) in the case c̄

(k) = 1 for k = 0 (left), k = 1
(middle), and k = 2 (right), for ↵s = 0.5 (top row) and ↵s = 0.12 (bottom row). These numerical
estimates are computed by integrating over the distributions for 10 unknown coe�cients, the results
being stable when using more. Using values of ↵s of the order of 0.2 or 0.3 does not degrade
significantly the quality of the approximation seen here in the ↵s = 0.12 case.

where f(c̄|c
0

, . . . , ck) is given in eq. (30) and the f(cn|c̄) in eq. (20). Figure 2 shows the numerical
results for k = 0, 1 and 2 and the corresponding analytical approximation for f(�k|c0, . . . , ck) in
eq. (34). We can see that the agreement is extremely good, especially when small (realistic) value
of ↵s are used. We will therefore rely on the approximation of equation (33) for our predictions of
densities for �k in the rest of this paper.

3 Comparison with the conventional method

In deriving the density for �k in the previous section we made no reference to the scale variation
�k of the partial sum �k(Q,µ) which is usually employed in the conventional uncertainty estimate
[��

k ,�
+

k ] of section 2.1. In order to assess the compatibility of the two methods, we now wish to
study the relation between the density for �k and an interval of the kind [��

k ,�
+

k ].
Given a specific series and a set of coe�cients (c

0

, . . . , ck) we wish to evaluate

C(�k 2 [��
k ,�

+

k ]|c0, . . . , ck) =
Z

�

+
k

�

�
k

f(�k|c0, . . . , ck) d�k (39)

and, for definiteness, we now take [��
k ,�

+

k ] as the interval given by eq. (8), so that we can set

��
k = min(�k(Q,Q/2),�k(Q, 2Q))� �k = �

�
k � �k (40)

�+

k = max(�k(Q,Q/2),�k(Q, 2Q))� �k = �

+

k � �k (41)

Since the shape of �k(Q,µ), and therefore the values of ��
k and �+

k , depend on all the values of
the calculated coe�cients (c

0

, . . . , ck), while the density function f(�k|c0, . . . , ck) depends only on

12

The perturbative expansion of Eq.(3) is unlikely to converge [6] (see also Refs. [7, 8, 9, 10, 11, 12]) and the
asymptotic behavior of the coefficients is expected to be cn ∼ K nα n !/Sn when n→ ∞, and where K,α and S are
constants [13]. An overview of the mathematical theory of divergent series and interpretation of perturbation series is
given in Ref. [14].

The requirement of Eq.(3) (∼) is not a formal one; it has the physical meaning of a smooth transition between
the system with interaction and the system without it [15]. Furthermore, Borel and Carleman proved that there are
analytic functions corresponding to arbitrary asymptotic power series [16]. For a discussion on Borel summability
and renormalon effects, we refer to the work of Ref. [17]; for a criterion on Borel summability, we refer to the work
of Ref. [18].

We also would like to mention that a procedure allowing for the elimination of the leading uncertainty of pertur-
bative expansions in QCD can be found in Ref. [19] and that large orders in perturbation theory have been discussed
in Ref. [20].

We should stress that recoverability of a function by means of its asymptotic series is possible only if “enough”
analyticity is available [15] and any work on MHO(U) should be based on this assumption. In other words, there are
in general infinitely many functions with the same asymptotic expansion. Therefore, one should assume that: a) there
is a sufficiently large analyticity domain and b) that there is an upper bound on the remainder for each order above a
certain value. We will discuss the plausibility of these assumptions in the context of the example of Higgs production
via gluon-gluon–fusion. It is worth nothing that the authors of Ref. [2] only assume b); starting from Eq.(3), they
estimate the remainder Rk = O −∑kn=0 cn gn, to be Rk ≈ ck+1 gk+1 with ck+1 = max{| c0 |, . . . , | ck |}. This, in turn,
reflects into a width of ck+1 gk+1 for the flat part of the uncertainty pdf.

Therefore, the MHO problem and its associated uncertainty can be summarized in one point: how can we make
predictions for higher order perturbative coefficients, whose explicit calculation is cumbersome and time-consuming,
while keeping a balance with analyticity? As discussed in Ref. [15], the problem is not that of divergence of the series,
but of whether the expansion uniquely determines the function or not, and examples are given of functions which are
singular at the origin while their asymptotic expansion is a convergent series.

We will not be able to answer these general questions (namely to prove uniqueness) and will rather concentrate on
predicting higher orders using the well-known concept of “series acceleration” [21, 22, 23], i.e., one of a collection
of sequence transformations for improving the rate of convergence of a series. If the original series is divergent, the
sequence transformation acts as an extrapolation method. In the case of infinite sums that formally diverge, the helpful
property of sequence transformations is that they may return a result that can be interpreted as the evaluation of the
analytic extension of the series for the sum. The relation between Borel summation (the usual method applied for
summing divergent series) and these extrapolation methods was noted for the first time in Refs. [24, 25]. Note that
the definition of the sum of a factorially divergent series, including those with non-alternating coefficients, is always
equivalent to Borel’s definition (see Section 7 of Ref. [14]).

3. Existing calculations of Higgs production via gluon-gluon fusion

Let us consider what is presently known of Higgs production via gluon-gluon–fusion, i.e., the process gg→ H.
There have been several attempts to compute approximate N3LO corrections, see Refs. [26, 27, 28]. Here we follow
the work of Ref. [27] and define

σgg
(

τ ,M2
H

)

σ0gg
(

τ ,M2
H

) = Kgg
(

τ ,M2
H , αs

)

= 1+
∞

∑
n=1

αns (µR)Kn
gg
(

τ,µ =MH
)

, (4)

where τ =M2
H/s, σ0gg is the LO cross section, and the K -factor Kgg was expanded in powers of αs(µR). In Eq.(4) it is

understood that when computing the partial sums SN = 1+∑Nn=1 α
n
s (µR)Kn

gg, αs is computed at the highest level, i.e.,
NLO for S1, NNLO for S2, etc.

Introducing γn=Kn
gg, the known values are γ1=K1gg

(

τ,µ =MH
)

= 11.879 and γ2=K2gg
(

τ,µ =MH
)

= 72.254. In
their recent work, the authors of Ref. [27] computed an approximation of α3s (µ) K3gg (µ) at

√
s= 8 TeV for µ =MH/2,

MH, and 2MH. Since α3s (µ) K3gg (µ) is only known within a given interval (see Tab. 1 and discussion after Eq.(4.1)

2
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A simple example
Imagine we count events in two regions, each populated by two 
signal processes and some background 
!
!
!
If we are interested in measuring σ₁ & σ₂ we need to know the four 
selection efficiency factors, which rely on theory 

• Equivalently, measure signal strength µ with respect to nominal 
theoretical reference 

!
Situation complicated when expected signal and background rates 
depend on uncertain quantities, parametrized by α

4

n1 = ✏11�1 + ✏12�2 + b1

n2 = ✏21�1 + ✏22�2 + b2

✏12�1 ! µ1s12

n1 = µ1s11(↵) + µ2s12(↵) + b1(↵)

n2 = µ1s21(↵) + µ2s22(↵) + b2(↵)
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An complex example: Higgs @ LHC
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FIG. 1. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → γγ, (b) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in the entire mass range, (c) H → ZZ(∗) → ℓ+ℓ−ℓ+ℓ− in
the low mass range, (d) H → ZZ → ℓ+ℓ−νν, (e) b-tagged selection and (f) untagged selection for H → ZZ → ℓ+ℓ−qq, (g) H →
WW (∗) → ℓ+νℓ−ν+0-jets, (h) H → WW (∗) → ℓ+νℓ−ν+1-jet, (i) H → WW (∗) → ℓ+νℓ−ν+2-jets, (j) H → WW → ℓνqq′+0-
jets, (k) H → WW → ℓνqq′+1-jet and (l) H → WW → ℓνqq′+2-jets. The H → WW (∗) → ℓ+νℓ−ν+2-jets distribution is
shown before the final selection requirements are applied.
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FIG. 2. Invariant or transverse mass distributions for the selected candidate events, the total background and the signal expected
in the following channels: (a) H → τlepτlep+0-jets, (b) H → τlepτlep 1-jet, (c) H → τlepτlep+2-jets, (d) H → τlepτhad+0-jets and
1-jet, (e) H → τlepτhad+2-jets, (f) H → τhadτhad. The bb invariant mass for (g) the ZH → ℓ+ℓ−bb̄, (h) the WH → ℓνbb̄ and (i)
the ZH → ννbb̄ channels. The vertical dashed lines illustrate the separation between the mass spectra of the subcategories in
pZT, p

W
T , and Emiss

T , respectively. The signal distributions are lightly shaded where they have been scaled by a factor of five or
ten for illustration purposes.
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Channels are sub-divided to enhance sensitivity either for 
experimental reasons or take advantage of production features

6

March 8, 2013 – 16 : 11 DRAFT 3

For each analysis category (k) the number of signal events (nk
signal) is parametrized as:60

nk
signal =

⎛
⎜⎜⎜⎜⎜⎝
∑

i

µiσi,SM × Ak
i f × εk

i f

⎞
⎟⎟⎟⎟⎟⎠ × µ f × Bf ,SM ×Lk (1)

where A represents the detector acceptance, ε the reconstruction efficiency andL the integrated luminos-61

ity. The number of signal events expected from each combination of production and decay is scaled by62

the corresponding product of µiµ f , with no change to the distribution of kinematic or other properties.63

This parametrization generalizes the dependency of the signal yields on the production cross sections64

and decay branching fractions, allowing for a coherent variation across several channels. This approach65

is also general in the sense that it is not restricted by any relationship between production cross sections66

and branching ratios. The relationship between production and decay in the context of a specific theory67

or benchmark is achieved via a parametrization of µi, µ f → f (κ), where the κ are the parameters of the68

theory or benchmark under consideration as defined in Section 5. In the simplest cases the product µiµ f69

Table 1: Summary of the individual channels entering the combined results presented here. In channels
sensitive to associated production of the Higgs boson, V indicates a W or Z boson. The symbols ⊗ and ⊕
represent direct products and sums over sets of selection requirements, respectively. The abbreviations
listed here are described in the corresponding Refs. reported in the last column. For the determination of
the combined signal strength µ in Section 4 the inclusive H→ZZ(∗)→ 4ℓ analysis [8] is used.

Higgs Boson Subsequent Sub-Channels
∫

L dt Ref.Decay Decay [fb−1]
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√
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H → ZZ(∗) 4ℓ {4e, 2e2µ, 2µ2e, 4µ, 2-jet VBF, ℓ-tag} 4.6 [8]

H → γγ – 10 categories 4.8 [7]{pTt ⊗ ηγ ⊗ conversion} ⊕ {2-jet VBF}
H → WW (∗) ℓνℓν {ee, eµ, µe, µµ} ⊗ {0-jet, 1-jet, 2-jet VBF} 4.6 [9]

H → ττ
τlepτlep {eµ} ⊗ {0-jet} ⊕ {ℓℓ} ⊗ {1-jet, 2-jet, pT,ττ > 100 GeV, VH} 4.6
τlepτhad {e, µ} ⊗ {0-jet, 1-jet, pT,ττ > 100 GeV, 2-jet} 4.6 [10]
τhadτhad {1-jet, 2-jet} 4.6

VH → Vbb
Z → νν Emiss

T ∈ {120 − 160, 160 − 200,≥ 200 GeV} ⊗ {2-jet, 3-jet} 4.6
W → ℓν pW

T ∈ {< 50, 50 − 100, 100 − 150, 150 − 200,≥ 200 GeV} 4.7 [11]
Z → ℓℓ pZ

T ∈ {< 50, 50 − 100, 100 − 150, 150 − 200,≥ 200 GeV} 4.7

2012
√
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τlepτlep {ℓℓ} ⊗ {1-jet, 2-jet, pT,ττ > 100 GeV, VH} 13
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T ∈ {120 − 160, 160 − 200,≥ 200 GeV} ⊗ {2-jet, 3-jet} 13
W → ℓν pW

T ∈ {< 50, 50 − 100, 100 − 150, 150 − 200,≥ 200 GeV} 13 [11]
Z → ℓℓ pZ

T ∈ {< 50, 50 − 100, 100 − 150, 150 − 200,≥ 200 GeV} 13
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∑

i

µiσi,SM × Ak
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i f

⎞
⎟⎟⎟⎟⎟⎠ × µ f × Bf ,SM ×Lk (1)
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ity. The number of signal events expected from each combination of production and decay is scaled by62
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theory or benchmark under consideration as defined in Section 5. In the simplest cases the product µiµ f69

Table 1: Summary of the individual channels entering the combined results presented here. In channels
sensitive to associated production of the Higgs boson, V indicates a W or Z boson. The symbols ⊗ and ⊕
represent direct products and sums over sets of selection requirements, respectively. The abbreviations
listed here are described in the corresponding Refs. reported in the last column. For the determination of
the combined signal strength µ in Section 4 the inclusive H→ZZ(∗)→ 4ℓ analysis [8] is used.
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Z → νν Emiss
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T ∈ {< 50, 50 − 100, 100 − 150, 150 − 200,≥ 200 GeV} 4.7
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√
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H → ZZ(∗) 4ℓ {4e, 2e2µ, 2µ2e, 4µ, 2-jet VBF, ℓ-tag}} 20.7 [8]

H → γγ – 14 categories 20.7 [7]{pTt ⊗ ηγ ⊗ conversion} ⊕ {2-jet VBF} ⊕ {ℓ-tag, Emiss
T -tag, 2-jet VH}

H → WW (∗) ℓνℓν {ee, eµ, µe, µµ} ⊗ {0-jet, 1-jet, 2-jet VBF} 20.7 [9]

H → ττ
τlepτlep {ℓℓ} ⊗ {1-jet, 2-jet, pT,ττ > 100 GeV, VH} 13
τlepτhad {e, µ} ⊗ {0-jet, 1-jet, pT,ττ > 100 GeV, 2-jet} 13 [10]
τhadτhad {1-jet, 2-jet} 13
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Figure 12: The weighted distribution of the invariant mass of diphoton candidates for the combined

7 TeV and 8 TeV data samples. The weight wi for category i from [1, 14] is defined to be ln(1 + S i/Bi),
where S i is the expected number of signal events in a mass window that contains 90% of the signal

events, and Bi is the integral in the same window of a background-only fit.
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Figure 13: The observed signal strength µ for the 14 categories of the 8 TeV data analysis.
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Table 5: Summary of the impact of systematic uncertainties on the signal yields for the analysis of the

8 TeV data.
Systematic uncertainties Value(%) Constraint

Luminosity ±3.6
Trigger ±0.5

Photon Identification ±2.4 Log-normal

Isolation ±1.0
Photon Energy Scale ±0.25

Branching ratio ±5.9% − ±2.1% (mH = 110 - 150 GeV) Asymmetric
Log-normal

Scale ggF: +7.2−7.8 VBF: +0.2−0.2 WH: +0.2−0.6 Asymmetric

ZH: +1.6−1.5 ttH: +3.8−9.3 Log-normal

PDF+αs ggF: +7.5−6.9 VBF: +2.6−2.7 WH: ±3.5 Asymmetric

ZH: ±3.6 ttH: ±7.8 Log-normal

Theory cross section on ggF Tight high-mass two-jet: ±48 Log-normal

Loose high-mass two-jet: ±28
Low-mass two-jet: ±30

signal composition (%)
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Figure 9: Decomposition of the expected signal from the various production processes for each category

at mH = 126.5 GeV for
√
s = 8 TeV.
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the constraint terms

L
full

(µ,↵) =
Y

c2category

"
Pois(nc|⌫c(µ,↵))

ncY

e=1

fc(xe|µ,↵)

#

| {z }
⌘L

main

(µ,↵)

Y

i2syst
fi(ai|↵i)

| {z }
⌘L

constr

(↵)

. (2.3)

Typically, confidence intervals are then defined by contours of the profile likelihood

ratio

�(µ) =
L(µ, ˆ̂↵(µ))

L(µ̂, ↵̂)
(2.4)

where ˆ̂↵(µ) is the conditional maximum likelihood estimate and µ̂, ↵̂ are the unconditional

maximum likelihood estimates [20].

2.2 The E↵ective Signal Strength

We are interested in inferring the values of the signal strength parameters µ, which scale the

signal expectation scpd; however, the presence of experimental and theoretical uncertainties

mean that the signal and background expectations are functions of the nuisance parameters

as in Eq.(2.1). Alternatively, we can introduce e↵ective scale factor with respect to some

fixed reference scenario ↵
0

, so the expected number of events can be re-written

⌫c(µ,↵) =
X

p,d

µpd scpd(↵) + bc(↵)

!
X

p,d

µe↵

cpd(µ,↵) scpd(↵0

) + bc(↵0

) . (2.5)

The key conceptual jump is to realize that we can think of µe↵

cpd not as a function, but as

a well-defined parameter free of theoretical uncertainty that we can infer directly.

While the signal strength parameters µpd we ultimately want to infer are independent

of the details the individual analysis categories, the e↵ective signal strength µe↵

cpd is specific

to the cth category due to the selection e�ciency (and, more generally, the distributions

fc(x|µ,↵)). In particular, selection requirements that leverage exclusive or di↵erential

properties of a specific production and decay will introduce category-specific theoretical

uncertainties.

State-of-the art Higgs property measurements can include hundreds of categories of

events. The full likelihood L
full

defined in Eq.(2.3) encodes a detailed description of the

correlated e↵ect of common experimental systematic uncertainties. In practice, we want to

find some coarse graining of the many categories into a few groups so that we can ignore the

category index within each group. By taking a common category-weighted signal strength

factor we can suppress the category index and make the replacement µe↵

cpd ! µe↵

pd. By doing

so, we can define

L
e↵

(µe↵) ⌘ L
main

(µ = µe↵,↵ = ↵
0

) . (2.6)
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of our specific application to the Higgs coupling measurements at the LHC. In Section 3

we briefly discuss the issues with theoretical uncertainties at hadron colliders and how

they a↵ect the Higgs couplings measurement. Section 4 demonstrates the procedure with

a toy example based on the ATLAS results presented in Ref. [14]. Next, we consider some

specific new physics scenarios that can be tested through Higgs coupling measurements in

Section 5. A simple example is worked in detail in Appendix A and more details on the

new physics models in Appendix B.

2 The Approach

2.1 The Statistical Model

In this Section we outline briefly the statistical modeling approach used by the LHC ex-

periments following Ref. [19]. Once the statistical model has been constructed, the LHC

experiments employ the profile likelihood ratio to define confidence intervals [20] on the

parameters of interest.

The coupling measurements require defining several disjoint categories of events, in-

dexed by c, which satisfy specific selection criteria designed, in part, to be particularly

sensitive to a particular production or decay mode. Each category has associated to it an

expected (observed) number of events ⌫c (nc). Each category may also have some discrim-

inating variable(s) x, such as an invariant mass, and a corresponding probability density

function f(x). The data associated to the cth category is denoted Dc = {x
1

, . . . , xnc}. In

general the expected number of events and their distribution will depend on both the signal

strength parameters µ and nuisance parameters ↵. The nuisance parameters ↵ parametrize

both theoretical and experimental uncertainties. Typically, the expected number of events

is written

⌫c(µ,↵) =
X

p,d

µpdscpd(↵) + bc(↵) , (2.1)

where bc(↵) is the background in this category, and

scpd(↵) = L(↵) �SM

p (↵) BRSM

d (↵) ✏cpd(↵) (2.2)

is the expected Standard Model signal for production mode p and decay mode d predicted

by the product of the integrated luminosity, cross section, branching ratio, and selection

e�ciency, each of which may depend on theoretical uncertainties parametrized by ↵.

Constraint terms associated with systematic uncertainties are described as fi(ai|↵i),

where ↵i are nuisance parameters and ai are auxiliary or control measurements designed

to estimate those nuisance parameters. In the case of experimental uncertainties, there

are often real auxiliary measurements that are summarized by fi(ai|↵i). However, in the

case of most theoretical uncertainties, the auxiliary measurement does not truly exist and

an ad hoc fi(ai|↵i) is introduced for convenience. The full likelihood function used by the

experiments [21] can be written as a product of the main experimental measurement and

– 3 –

expected number of events:

Subscripts!
c … category 
p … production!
d … decay!
e … event!
i  … systematic

yield shape systematics
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Current presentation of results
Likelihood scans in the space of the “signal strengths” associated to production 
modes advocated in [arXiv:1307.5865] for communicating LHC Higgs results.  
Later ATLAS published such scans 
!
!
!
!
!
!
!
These data are directly linked to the paper in INSPIRE and have been cited:
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While this is a major step forward in communicating LHC Higgs results, there are 
some issues that still need to be addressed. 
!
!
!
!
!
!
!

1. Some systematics are shared between these different channels, so simply multiplying 
them together will lead to double-counting those constraint terms (priors) 

2. In addition, the profiling of the common systematics is not consistent, different 
channels can pull nuisance parameters in different directions 

3. Theory uncertainties use the standard prescription from the LHC XSWG. That 
prescription and the magnitude of the uncertainties is likely to change in the future as 
progress is made on the theoretical side.  

Goal: We want to decouple shared uncertainties from the reported likelihood scan
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Basic idea (1/2 )
Left: contours with / without theory uncertainties 
Center: contours w/o theory uncertainty shifted by changing ggF inclusive x-sec up by 1σ 
Right: collection of vectors indicating how best fit point moves due to each source of 
uncertainty 
!
!
!
!
!
!
!
!
!
!
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4 A Toy Example

We now consider a toy example that is representative of the current ATLAS results for

H ! ��,WW,ZZ [14]. The statistical model here is based purely on number of events in

various categories without including discriminating variable distributions for m�� , m
4`, or

mT (the terms fc(x|µ,↵) in Eq.(2.3)). Each decay mode groups together several categories

of events that together provide sensitivity to the underlying production modes. We model

the uncertainty on the signal expectation from luminosity, parton distribution functions,

the inclusive gluon fusion cross section, and the uncertainty on the cross section for gluon

fusion in association with two or more jets.

The H ! �� likelihood includes a simplified version of the 14 categories considered by

ATLAS including the low- and high-p
Tt

categories, the low- and high-mass 2-jet categories,

the high-E/T significance category, and the lepton-tagged category. The H ! ZZ ! 4`

likelihood includes three ggF-like categories (for 4µ, 2e2µ, and 4e) as well as a VBF-like and

a VH-like category. The H ! WW ! `⌫`⌫ likelihood includes 0-, 1-, and 2-jet categories.

The HistFactory script and RooFit/RooStats workspace for this toy model can be found

at Ref. [41].
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Figure 1. Likelihood contours for three di↵erent Higgs decays: (a) with (solid) and without
(dashed) theoretical uncertainties; (b) without theoretical uncertainties for the nominal gluon fusion
cross section (solid) and a shifted value (dashed) estimated from QCD scale variations.

Figure 1(a) shows the likelihood contours for the three di↵erent decays with and with-

out theoretical uncertainties, which are modeled using Gaussian constraint terms and a

linear response as in Eq. (2.8). Fig. 1(b) shows the shift to the contours without theory

uncertainty due to fixing the inclusive gluon fusion cross section to its “+1�” value esti-

mated from QCD scale variation. The larger gluon fusion cross section leads to a smaller

inferred value for µ
ggF

. This can be repeated for each of the nuisance parameters ↵i as in

Eq.(2.21). The corresponding partial derivatives are visualized in Fig. 2.

– 14 –

Points move in this plane when varying  
common nuisance parameters.

All plots are based on counting models 
that mimic ATLAS results.

ggF+ttH
fµ

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

VB
F+

VH
f
µ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

luminosity
 2 jets*QCD scale ggF 

QCD scale ggF inclusive

| > 3%dshowing only |

ggF+ttH
fµ

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

VB
F+

VH
f
µ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

luminosity
 2 jets*QCD scale ggF 

QCD scale ggF inclusive

| > 3%dshowing only |

ggF+ttH
fµ

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

VB
F+

VH
f
µ

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

luminosity
 2 jets*QCD scale ggF 

QCD scale ggF inclusive

| > 3%dshowing only |

H→γγ

H→ZZ*→4l

H→WW*→lvlv

keeping the ↵ fixed and considering the likelihood is only a function of µ. For example,

Fig. 1(b) shows the shift in the L(µ) contour due to a shift in the gluon fusion inclusive

cross section. We denote the best fit µ with fixed ↵ as

µ̂fix(↵) ⌘ argmaxµ L
full

(µ,↵) (2.20)

with µ̂fix(↵̂) = µ̂. Because of the definition L
full

(µ,↵
0

) ⌘ L
e↵

(µ) in Eq.(2.6), this implies

that µ̂fix(↵
0

) = µ̂e↵. Finally, if the main measurement is not able to measure the nuisance

parameters, i.e. there is flat direction in the likelihood or a degeneracy between µ and

↵, then ↵
0

= ↵̂. By using a specific template — in this case Eq.(2.9) — we can equate

µe↵

p (µ̂fix

p ,↵i) = µ̂fix

p (1 + ⌘ip↵i) = µ̂p and then explicitly evaluate the partial derivative that

quantifies the shift to the best fit value of µ

@µ̂fix

p

@↵i

�����
ˆµ,ˆ↵

= �µ̂p⌘ip . (2.21)

These partial derivatives are visualized as vectors in the signal strength plane in Fig. 2.

Another way to arrive at Eq.(2.21) is to approximate the likelihood in the neighborhood

of the maximum likelihood estimate as a multivariate Gaussian G(µ,↵|µ̂, ↵̂,⌃). The

conditional distribution of µ given ↵ is also a multivariate Gaussian with mean given by

µ̂fix(↵) = µ̂+ ⌃c⌃
�1

↵ (↵� ↵̂) , (2.22)

where ⌃c is the upper-right sub-block of the full covariance matrix ⌃

(V �1

full

)�1 = ⌃ =

"
⌃µ ⌃c

⌃T
c ⌃↵

#
. (2.23)

In situations that the main measurement does not constrain or pull on the nuisance pa-

rameters, ⌃↵ is just the covariance matrix associated to the constraint term defined in

Eq.(2.3). In general ⌃c will depend both on the constraint terms and the main measure-

ment. Clearly, the conditional likelihood with ↵ fixed as in Eq.(2.20) is independent of the

constraint term, thus the product (⌃c⌃�1

↵ ) can only depend on the details of the main mea-

surement. Through the techniques developed for regression in the general linear model [24]

one can show that
@µ̂fix

p

@↵i

�����
↵=

ˆ↵

= (⌃c⌃
�1

↵ )ip = �µ̂p⌘ip , (2.24)

where the right-most equivalence is specific to the template of Eq.(2.9) and explicit com-

putation requires an assumption about the constraint terms even though the result is inde-

pendent of those assumptions.This is shown explicitly for a simple example in Appendix A.

Note, one can eliminate the constraint terms and only consider the main measurement, in

which case ⌃ in Eq.(2.24) is a singular matrix and one must use the pseudo-inverse. While

this approach is mathematically cumbersome, it is equivalent to Eq.(2.21) and Eq.(2.25).
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4 A Toy Example

We now consider a toy example that is representative of the current ATLAS results for

H ! ��,WW,ZZ [14]. The statistical model here is based purely on number of events in

various categories without including discriminating variable distributions for m�� , m
4`, or

mT (the terms fc(x|µ,↵) in Eq.(2.3)). Each decay mode groups together several categories

of events that together provide sensitivity to the underlying production modes. We model

the uncertainty on the signal expectation from luminosity, parton distribution functions,

the inclusive gluon fusion cross section, and the uncertainty on the cross section for gluon

fusion in association with two or more jets.

The H ! �� likelihood includes a simplified version of the 14 categories considered by

ATLAS including the low- and high-p
Tt

categories, the low- and high-mass 2-jet categories,

the high-E/T significance category, and the lepton-tagged category. The H ! ZZ ! 4`

likelihood includes three ggF-like categories (for 4µ, 2e2µ, and 4e) as well as a VBF-like and

a VH-like category. The H ! WW ! `⌫`⌫ likelihood includes 0-, 1-, and 2-jet categories.

The HistFactory script and RooFit/RooStats workspace for this toy model can be found

at Ref. [41].
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Figure 1. Likelihood contours for three di↵erent Higgs decays: (a) with (solid) and without
(dashed) theoretical uncertainties; (b) without theoretical uncertainties for the nominal gluon fusion
cross section (solid) and a shifted value (dashed) estimated from QCD scale variations.

Figure 1(a) shows the likelihood contours for the three di↵erent decays with and with-

out theoretical uncertainties, which are modeled using Gaussian constraint terms and a

linear response as in Eq. (2.8). Fig. 1(b) shows the shift to the contours without theory

uncertainty due to fixing the inclusive gluon fusion cross section to its “+1�” value esti-

mated from QCD scale variation. The larger gluon fusion cross section leads to a smaller

inferred value for µ
ggF

. This can be repeated for each of the nuisance parameters ↵i as in

Eq.(2.21). The corresponding partial derivatives are visualized in Fig. 2.
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The goal is to show that by providing L
e↵

(µe↵), the reparametrization µe↵(µ,↵), and the

constraint terms fi(ai|↵i) that we can recouple these ingredients and approximate the full

likelihood

L
full

(µ,↵) ⇡ L
recouple

(µ,↵) ⌘ L
e↵

(µe↵(µ,↵)) · L
constr

(↵) . (2.7)

In the case of an inclusive cross section uncertainty µe↵

cpd is the same for all c — in

which case we say the e↵ect of that uncertainty is category-universal. If all uncertainties

are category-universal, then it is possible for this approach to be exact. More generally

the grouping of categories will lead to µe↵(µ,↵) encoding some weighted e↵ect from the

individual categories. We will discuss some examples in the next section.

2.3 Reparametrization Templates

The art of this approach lies in choosing a template for the reparametrization in which

the coe�cients of the template can be e↵ectively deduced from the likelihood. We treat

the likelihood as a “black box” since the diversity and complexity of statistical models

created by experimentalists and encompassed by Eq.(2.3) is so diverse. In the case that

the reparametrization µe↵(µ,↵) is category-universal, which can be trivially achieved if the

ingredients are explicitly provided for each category, this reformulation of the likelihood

can be exact.

For example, a natural way to parametrize the dependence of the expected signal due

to uncertainties that modify inclusive production cross sections is

scpd(↵) = scpd(↵0

)

"
1 +

X

i

⌘pi(↵i � ↵
0,i)

#
(8c, d) , (2.8)

which is equivalent to

µe↵

pd(µ,↵) = µpd

"
1 +

X

i

⌘pi(↵i � ↵
0,i)

#
(8c, d) . (2.9)

In this situation, µe↵

pd(µ,↵) is not linear in the full set of parameters, but is bi-linear in

(µpd,↵). This µ scaling is important for capturing the behavior of the likelihood away from

the maximum likelihood estimate and distinguishes this approach from techniques such as

BLUE [11].

In the case of uncertainties that only e↵ect the background through

bc(↵) = bc(↵0

)

"
1 +

X

i

�ci(↵i � ↵
0,i)

#
(8p, d) (2.10)

the equivalent form of the e↵ective signal strength is

µe↵

pd(µ,↵) = µpd +
bc(↵0

)

scpd(↵0

)

"
X

i

�ci(↵i � ↵
0,i)

#
(8p, d) , (2.11)

which is linear in µpd and ↵. Because bc(↵0

)/scpd(↵0

) is a constant, this pre-factor can be

absorbed into �ci and the category-weighted e↵ect would simply be written �i.
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the constraint terms

L
full

(µ,↵) =
Y

c2category

"
Pois(nc|⌫c(µ,↵))

ncY

e=1

fc(xe|µ,↵)

#

| {z }
⌘L

main

(µ,↵)

Y

i2syst
fi(ai|↵i)

| {z }
⌘L

constr

(↵)

. (2.3)

Typically, confidence intervals are then defined by contours of the profile likelihood

ratio

�(µ) =
L(µ, ˆ̂↵(µ))

L(µ̂, ↵̂)
(2.4)

where ˆ̂↵(µ) is the conditional maximum likelihood estimate and µ̂, ↵̂ are the unconditional

maximum likelihood estimates [20].

2.2 The E↵ective Signal Strength

We are interested in inferring the values of the signal strength parameters µ, which scale the

signal expectation scpd; however, the presence of experimental and theoretical uncertainties

mean that the signal and background expectations are functions of the nuisance parameters

as in Eq.(2.1). Alternatively, we can introduce e↵ective scale factor with respect to some

fixed reference scenario ↵
0

, so the expected number of events can be re-written

⌫c(µ,↵) =
X

p,d

µpd scpd(↵) + bc(↵)

!
X

p,d

µe↵

cpd(µ,↵) scpd(↵0

) + bc(↵0

) . (2.5)

The key conceptual jump is to realize that we can think of µe↵

cpd not as a function, but as

a well-defined parameter free of theoretical uncertainty that we can infer directly.

While the signal strength parameters µpd we ultimately want to infer are independent

of the details the individual analysis categories, the e↵ective signal strength µe↵

cpd is specific

to the cth category due to the selection e�ciency (and, more generally, the distributions

fc(x|µ,↵)). In particular, selection requirements that leverage exclusive or di↵erential

properties of a specific production and decay will introduce category-specific theoretical

uncertainties.

State-of-the art Higgs property measurements can include hundreds of categories of

events. The full likelihood L
full

defined in Eq.(2.3) encodes a detailed description of the

correlated e↵ect of common experimental systematic uncertainties. In practice, we want to

find some coarse graining of the many categories into a few groups so that we can ignore the

category index within each group. By taking a common category-weighted signal strength

factor we can suppress the category index and make the replacement µe↵

cpd ! µe↵

pd. By doing

so, we can define

L
e↵

(µe↵) ⌘ L
main

(µ = µe↵,↵ = ↵
0

) . (2.6)

– 4 –

of our specific application to the Higgs coupling measurements at the LHC. In Section 3

we briefly discuss the issues with theoretical uncertainties at hadron colliders and how

they a↵ect the Higgs couplings measurement. Section 4 demonstrates the procedure with

a toy example based on the ATLAS results presented in Ref. [14]. Next, we consider some

specific new physics scenarios that can be tested through Higgs coupling measurements in

Section 5. A simple example is worked in detail in Appendix A and more details on the

new physics models in Appendix B.

2 The Approach

2.1 The Statistical Model

In this Section we outline briefly the statistical modeling approach used by the LHC ex-

periments following Ref. [19]. Once the statistical model has been constructed, the LHC

experiments employ the profile likelihood ratio to define confidence intervals [20] on the

parameters of interest.

The coupling measurements require defining several disjoint categories of events, in-

dexed by c, which satisfy specific selection criteria designed, in part, to be particularly

sensitive to a particular production or decay mode. Each category has associated to it an

expected (observed) number of events ⌫c (nc). Each category may also have some discrim-

inating variable(s) x, such as an invariant mass, and a corresponding probability density

function f(x). The data associated to the cth category is denoted Dc = {x
1

, . . . , xnc}. In

general the expected number of events and their distribution will depend on both the signal

strength parameters µ and nuisance parameters ↵. The nuisance parameters ↵ parametrize

both theoretical and experimental uncertainties. Typically, the expected number of events

is written

⌫c(µ,↵) =
X

p,d

µpdscpd(↵) + bc(↵) , (2.1)

where bc(↵) is the background in this category, and

scpd(↵) = L(↵) �SM

p (↵) BRSM

d (↵) ✏cpd(↵) (2.2)

is the expected Standard Model signal for production mode p and decay mode d predicted

by the product of the integrated luminosity, cross section, branching ratio, and selection

e�ciency, each of which may depend on theoretical uncertainties parametrized by ↵.

Constraint terms associated with systematic uncertainties are described as fi(ai|↵i),

where ↵i are nuisance parameters and ai are auxiliary or control measurements designed

to estimate those nuisance parameters. In the case of experimental uncertainties, there

are often real auxiliary measurements that are summarized by fi(ai|↵i). However, in the

case of most theoretical uncertainties, the auxiliary measurement does not truly exist and

an ad hoc fi(ai|↵i) is introduced for convenience. The full likelihood function used by the

experiments [21] can be written as a product of the main experimental measurement and
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Expected number of events ν has signal strength μ that scales a signal yield s which depends on α

the constraint terms
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Typically, confidence intervals are then defined by contours of the profile likelihood
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(2.4)

where ˆ̂↵(µ) is the conditional maximum likelihood estimate and µ̂, ↵̂ are the unconditional

maximum likelihood estimates [20].

2.2 The E↵ective Signal Strength

We are interested in inferring the values of the signal strength parameters µ, which scale the

signal expectation scpd; however, the presence of experimental and theoretical uncertainties

mean that the signal and background expectations are functions of the nuisance parameters

as in Eq.(2.1). Alternatively, we can introduce e↵ective scale factor with respect to some

fixed reference scenario ↵
0

, so the expected number of events can be re-written

⌫c(µ,↵) =
X

p,d

µpd scpd(↵) + bc(↵)
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X

p,d

µe↵

cpd(µ,↵) scpd(↵0

) + bc(↵0

) . (2.5)

The key conceptual jump is to realize that we can think of µe↵

cpd not as a function, but as

a well-defined parameter free of theoretical uncertainty that we can infer directly.

While the signal strength parameters µpd we ultimately want to infer are independent

of the details the individual analysis categories, the e↵ective signal strength µe↵

cpd is specific

to the cth category due to the selection e�ciency (and, more generally, the distributions

fc(x|µ,↵)). In particular, selection requirements that leverage exclusive or di↵erential

properties of a specific production and decay will introduce category-specific theoretical

uncertainties.

State-of-the art Higgs property measurements can include hundreds of categories of

events. The full likelihood L
full

defined in Eq.(2.3) encodes a detailed description of the

correlated e↵ect of common experimental systematic uncertainties. In practice, we want to

find some coarse graining of the many categories into a few groups so that we can ignore the

category index within each group. By taking a common category-weighted signal strength

factor we can suppress the category index and make the replacement µe↵

cpd ! µe↵

pd. By doing

so, we can define

L
e↵

(µe↵) ⌘ L
main

(µ = µe↵,↵ = ↵
0
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The goal is to show that by providing L
e↵

(µe↵), the reparametrization µe↵(µ,↵), and the

constraint terms fi(ai|↵i) that we can recouple these ingredients and approximate the full

likelihood

L
full

(µ,↵) ⇡ L
recouple

(µ,↵) ⌘ L
e↵

(µe↵(µ,↵)) · L
constr

(↵) . (2.7)

In the case of an inclusive cross section uncertainty µe↵

cpd is the same for all c — in

which case we say the e↵ect of that uncertainty is category-universal. If all uncertainties

are category-universal, then it is possible for this approach to be exact. More generally

the grouping of categories will lead to µe↵(µ,↵) encoding some weighted e↵ect from the

individual categories. We will discuss some examples in the next section.

2.3 Reparametrization Templates

The art of this approach lies in choosing a template for the reparametrization in which

the coe�cients of the template can be e↵ectively deduced from the likelihood. We treat

the likelihood as a “black box” since the diversity and complexity of statistical models

created by experimentalists and encompassed by Eq.(2.3) is so diverse. In the case that

the reparametrization µe↵(µ,↵) is category-universal, which can be trivially achieved if the

ingredients are explicitly provided for each category, this reformulation of the likelihood

can be exact.

For example, a natural way to parametrize the dependence of the expected signal due

to uncertainties that modify inclusive production cross sections is

scpd(↵) = scpd(↵0

)

"
1 +

X

i

⌘pi(↵i � ↵
0,i)

#
(8c, d) , (2.8)

which is equivalent to

µe↵

pd(µ,↵) = µpd

"
1 +

X

i

⌘pi(↵i � ↵
0,i)

#
(8c, d) . (2.9)

In this situation, µe↵

pd(µ,↵) is not linear in the full set of parameters, but is bi-linear in

(µpd,↵). This µ scaling is important for capturing the behavior of the likelihood away from

the maximum likelihood estimate and distinguishes this approach from techniques such as

BLUE [11].

In the case of uncertainties that only e↵ect the background through

bc(↵) = bc(↵0

)

"
1 +

X

i

�ci(↵i � ↵
0,i)

#
(8p, d) (2.10)

the equivalent form of the e↵ective signal strength is

µe↵

pd(µ,↵) = µpd +
bc(↵0

)

scpd(↵0

)

"
X

i

�ci(↵i � ↵
0,i)

#
(8p, d) , (2.11)

which is linear in µpd and ↵. Because bc(↵0

)/scpd(↵0

) is a constant, this pre-factor can be

absorbed into �ci and the category-weighted e↵ect would simply be written �i.
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we briefly discuss the issues with theoretical uncertainties at hadron colliders and how

they a↵ect the Higgs couplings measurement. Section 4 demonstrates the procedure with

a toy example based on the ATLAS results presented in Ref. [14]. Next, we consider some

specific new physics scenarios that can be tested through Higgs coupling measurements in

Section 5. A simple example is worked in detail in Appendix A and more details on the

new physics models in Appendix B.

2 The Approach

2.1 The Statistical Model

In this Section we outline briefly the statistical modeling approach used by the LHC ex-

periments following Ref. [19]. Once the statistical model has been constructed, the LHC

experiments employ the profile likelihood ratio to define confidence intervals [20] on the

parameters of interest.

The coupling measurements require defining several disjoint categories of events, in-

dexed by c, which satisfy specific selection criteria designed, in part, to be particularly

sensitive to a particular production or decay mode. Each category has associated to it an

expected (observed) number of events ⌫c (nc). Each category may also have some discrim-

inating variable(s) x, such as an invariant mass, and a corresponding probability density

function f(x). The data associated to the cth category is denoted Dc = {x
1

, . . . , xnc}. In

general the expected number of events and their distribution will depend on both the signal

strength parameters µ and nuisance parameters ↵. The nuisance parameters ↵ parametrize

both theoretical and experimental uncertainties. Typically, the expected number of events

is written

⌫c(µ,↵) =
X

p,d

µpdscpd(↵) + bc(↵) , (2.1)

where bc(↵) is the background in this category, and

scpd(↵) = L(↵) �SM

p (↵) BRSM

d (↵) ✏cpd(↵) (2.2)

is the expected Standard Model signal for production mode p and decay mode d predicted

by the product of the integrated luminosity, cross section, branching ratio, and selection

e�ciency, each of which may depend on theoretical uncertainties parametrized by ↵.

Constraint terms associated with systematic uncertainties are described as fi(ai|↵i),

where ↵i are nuisance parameters and ai are auxiliary or control measurements designed

to estimate those nuisance parameters. In the case of experimental uncertainties, there

are often real auxiliary measurements that are summarized by fi(ai|↵i). However, in the

case of most theoretical uncertainties, the auxiliary measurement does not truly exist and

an ad hoc fi(ai|↵i) is introduced for convenience. The full likelihood function used by the

experiments [21] can be written as a product of the main experimental measurement and
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constraint terms fi(ai|↵i) that we can recouple these ingredients and approximate the full
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cpd is the same for all c — in

which case we say the e↵ect of that uncertainty is category-universal. If all uncertainties

are category-universal, then it is possible for this approach to be exact. More generally

the grouping of categories will lead to µe↵(µ,↵) encoding some weighted e↵ect from the

individual categories. We will discuss some examples in the next section.
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the likelihood as a “black box” since the diversity and complexity of statistical models
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as in the full likelihood, linear in μ and α

Another example is motivated by the large uncertainty associated to gluon-fusion (ggF)

Higgs production with two additional jets, which populates the categories meant to isolate

weak boson fusion (VBF). We would expect the uncertainty to modify the µe↵

c,p=VBF,d signal

strength for weak boson fusion, but be proportional to µ
ggF

. Thus we should anticipate

templates of the form

µe↵

pd(µ,↵) = µpd +
X

i,p0

µp0d ⌘
p0

pi (↵i � ↵
0,i) . (2.12)

Combining these three situations, a fairly general template would be

µe↵

pd(µ,↵) = µpd +
X

i,p0

µp0d ⌘
p0

pi (↵i � ↵
0,i) +

X

i

�i(↵i � ↵
0,i) , (2.13)

where we can identify ⌘pi = ⌘ppi from Eq.(2.8) and bc(↵0

)�ci/scpd(↵0

) = �i. This general

template involves n↵(n2

p + 1) coe�cients (per grouping of categories).

The LHC experiments must cope with additional complications. First is the fact that

uncertainties on ↵i can be large, and linear extrapolation of the e↵ect of this uncertainty

on a signal or background rate can lead to unphysical expectations like scpd < 0 or bc < 0.

To cope with this, the LHC experiments typically implement log-normal priors (constraint

terms), which are implemented via reparametrization so that fi(ai|↵i) is a Gaussian distri-

bution and scpd(↵i) is an exponential response function. This approach has two advantages:

it ensures scpd(↵i) > 0 and it allows for multiple signal expectations with di↵erent sensitiv-

ities to a common source of uncertainty to have a similar log-normal behavior parametrized

by ↵i.

Second, experiments often have a few numbers with which to parametrize the signal

(and background) expectations. Typically, this is based on a nominal scpd(↵i = 0) and

“±1�” variations on scpd(↵i = ±1) (using a conventional scaling of ↵i). Often the vari-

ation of scpd(↵i = ±1) with respect to scpd(↵i = 0) is asymmetric, which requires some

assumptions about the intermediate behavior and the use of ad hoc interpolation algo-

rithms, such as second degree polynomial or higher degree polynomials that match the

exponential extrapolation up to the second derivative [22, 23].

Finally, to ensure the positivity of scpd(↵) under the joint e↵ect of several sources of

uncertainty, it is common that the interpolation/extrapolation template is multiplicative

over the nuisance parameters. In generic terms, this often leads to signal expectations

parametrized as

scpd(↵) = scpd(↵0

)
Y

i

I(↵i) , (2.14)

where I(↵i) is some interpolation/extrapolation function based on scpd evaluated at several

points in ↵i. These ad hoc choices influence the resulting inference and further strengthen

the motivation to decouple theoretical uncertainties from the presentation of experimental

results.
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A toy example with large uncertainties
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Figure 7. Comparison of full likelihood (solid) and recouped (dashed) likelihood for Scenarios
A, B, and C. Scenario C illustrates the impact of using three templates ‘aligned’ (red), ‘by hand’
(green), and ‘learning’ (blue) as described in the text. The top row is based on the nominal Gaussian
constraint and the bottom row shows the result of replacing it with an alternative Rfit constraint
term. The e↵ective likelihood with ↵ = 0 is shown as a dotted line.

B New Physics Models

In this appendix we will give a more detailed picture of the new physics models and their

features briefly discussed in Section 5. In particular, we will motivate and discuss the

description of new physics e↵ects by a single parameter ⇠, defined as the modification of

the Higgs couplings to massive gauge bosons, i.e. �V ' �⇠2/2. Note that this unified

definition of ⇠ di↵ers from Ref. [42] for some of the new physics models. All signal strength

deviations we compute by rescaling the SM production cross section, branching ratio and

total width [12], while for the MSSM case we use FeynHiggs [53].

Dark singlet A dark singlet is defined as a model with an additional scalar particle S

which does not have a vacuum expectation value and hence cannot mix with the Higgs

boson. In addition, we assume that its only interaction with the Standard Model will be

the dimension-4 portal interactions in the combined scalar potential [45],

V (�, S) = µ2

1

(�†�) + �
1

|�†�|2 + �
3

|�†�|S2 . (B.1)

– 28 –

Contour with no theory 
uncertainty much smaller

Contour with theory 
uncertainty much larger. 

Here treated using 
Gaussian constraint term 

(prior)

Modified contour 
switching from 

Gaussian to RFIT / box 
constraint.!!

Anyone can do in 
recoupled approach, 
but would require a 

experiments to re-run 
in current approach.

Three examples for a simple 2 channel case with large uncertainties. 
The recoupled likelihood excellent approximation to full likelihood
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Results with combined Higgs benchmark
Here are results for two Higgs coupling benchmark models
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All plots are based on counting models that mimic ATLAS results.
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Combination of Effective Likelihoods
Demo at https://github.com/svenkreiss/decoupledDemo (works on lxplus). 
Leff is an efficient lookup table that replaces most of the complexity of the full  
model. What is normally a job for a cluster runs in 16min on my laptop.
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Effective likelihoods and template  
to common nuisance parameters  

can be published on the web.
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Figure 4. Various comparisons of the combined ��, ZZ,WW likelihoods in the (V ,F ) (left) and
(� ,g) (right) planes. Top: comparison of the full combined likelihood, a näıve combination with
inconsistent profiling and double counted constraint terms, and the combination of recoupled likeli-
hoods with consistent profiling and without double counted constraint terms. Bottom: comparison
of the full combined likelihood and the combination of recoupled likelihoods using the nominal
uncertainties and a modified constraint terms with uncertainties inflated by 30%.

other constraint terms L0
constr

(↵). The bottom plots of Fig. 4 demonstrate the change

by using the same L
e↵

and reparametrization template, but with uncertainties inflated by

30%. This recouped approach is compared to the full model where the same modification

is made to the constraint term. In addition, an example of replacing Gaussian constraint

terms with the Rfit scheme is given in Appendix A.
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Conclusions
The ability to decouple theoretical uncertainties from experimental results 
would be a big step forward 

• theory uncertainties are not statistical in nature and will evolve with time 
• this technique gives a lot of flexibility in how they are handled 

!
We have outlined a technique that achieves this 

• In addition, the technique solves a problem associated to double counting 
constraint terms and inconsistent profiling that is present if we publish 
profile likelihood scans for the individual channels. 

!
This approach still requires that the experiments understand the effect of 
individual sources of uncertainty on the various channels in the way that we are 
doing it now coordinated via the LHC HXSWG.  

!
Thank you!
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Determining Template Parameters
The covariance matrix can be used to determine up to np⋅nα of the template 
parameters η. For example, for templates without “cross-talk” and only category 
universal, symmetric uncertainties, the template parameters η are determined by: 
!
!
Similar equations can be derived for other scenarios, but usually knowledge has 
to be added “by-hand” to keep the number of parameters ≤np⋅nα. 
For more general templates, the local information contained in the likelihood and 
its first and second derivative is not enough, and information from various points 
of the likelihood needs to be used. This can be done by minimizing a loss function 
with the full and recoupled likelihoods: 
!
!
where π(µ,α) is a weight function. One possibility is to treat π(µ,α) as a posterior 
obtained using a baseline constraint term: 
In practical terms, this means that the integral in the loss function can be obtained 
using MCMC [note, does not make the method Bayesian].
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Derivation is in the paper with !
worked examples in the appendix.to do that we must introduce information about the likelihood away from (µ̂, ↵̂). A flex-

ible approach to that problem is based on the ideas of machine learning and function

approximation in which one aims to minimize a loss function with respect to some model

parameters (in this case the template coe�cients). The loss function needs to be a scalar

evaluated over the (µ,↵) space, which in frequentist terms has no measure. However, from

the point of view of decision theory, one can introduce some weighting over the parameter

space (without regarding it as a Bayesian prior) and evaluate

Loss(⌘) =

Z
dµd↵⇡(µ,↵) |L

full

(µ,↵)� L
recouple

(µ,↵;⌘)|2 (2.26)

The choice of the weighting function ⇡(µ,↵) is arbitrary, but a reasonable choice is the

Bayesian posterior with respect to some baseline constraint terms interpreted as a prior on

↵, which leads to

⇡(µ,↵) / L
main

(µ,↵)L
constr

(↵) . (2.27)

This approach will put the highest weight for L
recouple

to approximate L
full

near the best fit

point (µ̂, ↵̂) and lesser weight as one moves away from it. Importantly, this minimum loss

solution can be found numerically and is well defined even when the number of parameters

in the template is larger than np ⇥ n↵. Furthermore, this approach may be more robust

in the case of very complicated likelihood functions where the numerical accuracy of the

covariance matrix, information matrix, and partial derivatives needed in Eqs. (2.21), (2.24),

and (2.25) may be poor.

In situations where additional experimental uncertainties ↵
exp

have been profiled in

providing L
e↵

(µe↵) — a situation discussed in more detail in Sec. 2.5 — one must take care

that the loss function makes the comparison for equivalent values of the profiled nuisance

parameters. For example, when creating L
e↵

(µe↵), one can keep track of the profiled values
ˆ̂↵
exp

(µe↵) and then in Eq.(2.26) make the replacement

L
full

(µ,↵) ! L
full

(µ,↵, ˆ̂↵
exp

(µe↵(µ,↵)) ). (2.28)

We demonstrate the e↵ectiveness of this approach in Sec. 4 and Scenarios B and C of

Appendix A.

Software The software implementation of the reparametrization templates described

in Sec. 2.3 as well as the three strategies for determining the coe�cients of those tem-

plates from the local covariance matrix and the learning approach described in described

in Sec. 2.4 is available at Ref. [25]. Experiments can use this software on their full

RooFit/RooStats [26] models and obtain the e↵ective likelihood L
e↵

(µe↵) as well as the

reparametrization µe↵(µ,↵) for publication. These ingredients can be supplied in a tech-

nology independent format enabling others to perform the recoupling stage, modify con-

straint terms associated to theoretical uncertainties, combine multiple results, and create

likelihood scans in benchmark models.

– 10 –

to do that we must introduce information about the likelihood away from (µ̂, ↵̂). A flex-

ible approach to that problem is based on the ideas of machine learning and function

approximation in which one aims to minimize a loss function with respect to some model

parameters (in this case the template coe�cients). The loss function needs to be a scalar

evaluated over the (µ,↵) space, which in frequentist terms has no measure. However, from

the point of view of decision theory, one can introduce some weighting over the parameter

space (without regarding it as a Bayesian prior) and evaluate

Loss(⌘) =

Z
dµd↵⇡(µ,↵) |L

full

(µ,↵)� L
recouple

(µ,↵;⌘)|2 (2.26)

The choice of the weighting function ⇡(µ,↵) is arbitrary, but a reasonable choice is the

Bayesian posterior with respect to some baseline constraint terms interpreted as a prior on

↵, which leads to

⇡(µ,↵) / L
main

(µ,↵)L
constr

(↵) . (2.27)

This approach will put the highest weight for L
recouple

to approximate L
full

near the best fit

point (µ̂, ↵̂) and lesser weight as one moves away from it. Importantly, this minimum loss

solution can be found numerically and is well defined even when the number of parameters

in the template is larger than np ⇥ n↵. Furthermore, this approach may be more robust

in the case of very complicated likelihood functions where the numerical accuracy of the

covariance matrix, information matrix, and partial derivatives needed in Eqs. (2.21), (2.24),

and (2.25) may be poor.

In situations where additional experimental uncertainties ↵
exp

have been profiled in

providing L
e↵

(µe↵) — a situation discussed in more detail in Sec. 2.5 — one must take care

that the loss function makes the comparison for equivalent values of the profiled nuisance

parameters. For example, when creating L
e↵

(µe↵), one can keep track of the profiled values
ˆ̂↵
exp

(µe↵) and then in Eq.(2.26) make the replacement

L
full

(µ,↵) ! L
full

(µ,↵, ˆ̂↵
exp

(µe↵(µ,↵)) ). (2.28)

We demonstrate the e↵ectiveness of this approach in Sec. 4 and Scenarios B and C of

Appendix A.

Software The software implementation of the reparametrization templates described

in Sec. 2.3 as well as the three strategies for determining the coe�cients of those tem-

plates from the local covariance matrix and the learning approach described in described

in Sec. 2.4 is available at Ref. [25]. Experiments can use this software on their full

RooFit/RooStats [26] models and obtain the e↵ective likelihood L
e↵

(µe↵) as well as the

reparametrization µe↵(µ,↵) for publication. These ingredients can be supplied in a tech-

nology independent format enabling others to perform the recoupling stage, modify con-

straint terms associated to theoretical uncertainties, combine multiple results, and create

likelihood scans in benchmark models.

– 10 –

keeping the ↵ fixed and considering the likelihood is only a function of µ. For example,

Fig. 1(b) shows the shift in the L(µ) contour due to a shift in the gluon fusion inclusive

cross section. We denote the best fit µ with fixed ↵ as

µ̂fix(↵) ⌘ argmaxµ L
full

(µ,↵) (2.20)

with µ̂fix(↵̂) = µ̂. Because of the definition L
full

(µ,↵
0

) ⌘ L
e↵

(µ) in Eq.(2.6), this implies

that µ̂fix(↵
0

) = µ̂e↵. Finally, if the main measurement is not able to measure the nuisance

parameters, i.e. there is flat direction in the likelihood or a degeneracy between µ and

↵, then ↵
0

= ↵̂. By using a specific template — in this case Eq.(2.9) — we can equate

µe↵

p (µ̂fix

p ,↵i) = µ̂fix

p (1 + ⌘ip↵i) = µ̂p and then explicitly evaluate the partial derivative that

quantifies the shift to the best fit value of µ

@µ̂fix

p

@↵i

�����
ˆµ,ˆ↵

= �µ̂p⌘ip . (2.21)

These partial derivatives are visualized as vectors in the signal strength plane in Fig. 2.

Another way to arrive at Eq.(2.21) is to approximate the likelihood in the neighborhood

of the maximum likelihood estimate as a multivariate Gaussian G(µ,↵|µ̂, ↵̂,⌃). The

conditional distribution of µ given ↵ is also a multivariate Gaussian with mean given by

µ̂fix(↵) = µ̂+ ⌃c⌃
�1

↵ (↵� ↵̂) , (2.22)

where ⌃c is the upper-right sub-block of the full covariance matrix ⌃

(V �1

full

)�1 = ⌃ =

"
⌃µ ⌃c

⌃T
c ⌃↵

#
. (2.23)

In situations that the main measurement does not constrain or pull on the nuisance pa-

rameters, ⌃↵ is just the covariance matrix associated to the constraint term defined in

Eq.(2.3). In general ⌃c will depend both on the constraint terms and the main measure-

ment. Clearly, the conditional likelihood with ↵ fixed as in Eq.(2.20) is independent of the

constraint term, thus the product (⌃c⌃�1

↵ ) can only depend on the details of the main mea-

surement. Through the techniques developed for regression in the general linear model [24]

one can show that
@µ̂fix

p

@↵i

�����
↵=

ˆ↵

= (⌃c⌃
�1

↵ )ip = �µ̂p⌘ip , (2.24)

where the right-most equivalence is specific to the template of Eq.(2.9) and explicit com-

putation requires an assumption about the constraint terms even though the result is inde-

pendent of those assumptions.This is shown explicitly for a simple example in Appendix A.

Note, one can eliminate the constraint terms and only consider the main measurement, in

which case ⌃ in Eq.(2.24) is a singular matrix and one must use the pseudo-inverse. While

this approach is mathematically cumbersome, it is equivalent to Eq.(2.21) and Eq.(2.25).
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!
So far, we publish a SM point in the 2-d plane. However, it is also 
possible to come up with a 1-parameter description of various 
BSM models and show them as a line in the same plane.
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Figure 5. Decay–diagonal correlations of signal strengths µ
GF,d vs µ

VBF,d for d = ��, V V, ⌧⌧ in
di↵erent models. The coupling variation is limited to ⇠ < 0.4 and the value ⇠ = 0.2 is singled out.
The slight deviations from a complete decoupling are discussed in the text.

with su�cient luminosity. In addition, we mark a deviation by ⇠ = 0.2, equivalent to a 2%

coupling deviation. The latter could be considered the target of a linear collider analysis.

For the simplest models, the dark singlet and the singlet mixing, all correlations follow a

straight diagonal line towards reduced coupling strengths µp,d < 1. This is due to the simple

mixing pattern and the net scaling of the LHC event rates as �⇥BR / g2. The same pattern

appears for the simplest strongly interacting models with a single Higgs form factor. For

the more complex strongly interacting model MCHM5, we find both correlated (µ
GF,⌧⌧ �

µ
VBF,⌧⌧ ) and anti–correlated (µ

GF,V V �µ
VBF,V V ) patterns. It predicts an increased number

of weak boson fusion events whenever the couplings �V in the production process decrease

more slowly than the coupling �f in the total width, as shown in Eq.(5.6).

Larger departures from the Standard Model are possible in the 2HDM, thanks to its

more flexible coupling structure. In the type-I setup there is essentially no mechanism

to increase the number of weak boson fusion events as compared to the Standard Model,

because of the increase in the Higgs width combined with the reduced gauge boson coupling.

This is described in more detail in Appendix B. For gluon fusion production combined with

a fermionic decay the suppression by the total width can be compensated by the production

and decay couplings. In the type-II setup both signal strengths can, unexpectedly, be

enhanced for bosonic Higgs decays. The reason is a strongly decreased partial Higgs width

to bottoms and taus which cannot be generated in the type-I model. For fermionic decays

the direct link between the bottom and tau down-type Yukawas leads to a systematically

decreased event rate. The fact that for ⇠ ! 0 the 2HDM rates do not match the Standard

Model is linked to the finite contribution of the charged Higgs to the e↵ective photon–Higgs

coupling.

Finally, the MSSM as a constrained type-II 2HDM shows limited signal strength vari-

ations because of the supersymmetric constraints. Unlike the general 2HDM even in the

type-II setup the MSSM does not allow for a free variation of the two parameters ↵ and �,

which a↵ect the Yukawa couplings in a complicated manner. Departures from the decou-
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Robustness of New Models to Theory 
Robustness R in the three channels of various BSM models to 
changes in the QCD scale for the inclusive and ≥2 jets bins.
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Figure 6. The sensitivity heuristic Ri(⇠) evaluated for various new physics models and the theo-
retical uncertainties i associated to the gluon fusion cross section for � 0-jets and � 2-jets.

Standard Model even for ⇠ ⇠ 0. While for the type-I model the VBF topology is more

robust with respect to potential QCD e↵ects, deviations due to a type-II model are more

robust to the inclusive Higgs production rate. The most reliable signature for the strongly

interacting MCHM5 model would be observed in weak–boson–fusion Higgs production with

a decay H ! WW . For the MSSM the ⇠ axis is rescaled, because deviations ⇠ & 0.1 are

hardly generated in our scan over MSSM spectra. The robustness of a supersymmetric

Higgs sector is roughly equal for the inclusive and VBF Higgs topologies.

6 Conclusion

Motivated by the fact that ill-defined theoretical uncertainties will eventually be the lim-

iting factor in Higgs coupling measurements at the LHC, we have developed a technique

to decouple the theoretical uncertainties from the experimental results while retaining the

ability to incorporate those uncertainties in a subsequent stage we refer to as recoupling.

This approach is amenable to simultaneously measuring multiple quantities, such as a

vector of signal strength parameters µ for di↵erent Higgs production and decay signatures.

Moreover, the technique lends itself well to combinations with several common sources

of uncertainty that induce correlations among the contributing measurements. In that

respect it is similar to the Best Linear Unbiased Estimator (BLUE) [11] technique, but not

restricted to Gaussian measurements or linear response to the source of uncertainty. We

considered a toy example modeled after the current ATLAS Higgs coupling measurements

where the measurements are not in the Gaussian regime and these non-linear e↵ects are

important for approximating the full likelihood function.

One of the most powerful features of this approach is that it allows one to change the

assumptions on both the magnitude and the shape of the uncertainty in the recoupling

stage, which may occur long after the experimental groups have released their results.

This includes the ability to introduce a priori correlations in the source of the systematics,

which might have been neglected originally.

– 23 –

pling limit in this case lie below ⇠ . 0.2 for the considered parameter space configurations.

In the MSSM deviations from the Standard Model in the limit ⇠ ! 0 arise through con-

tributions of the sfermions and the charged Higgs to both the e↵ective gluon–Higgs and

photon–Higgs couplings. In that sense the parameter ⇠ does not fully track down the

decoupling limit for the loop–induced Higgs couplings, similarly to the 2HDM case. The

e↵ect of a shifted bottom Yukawa is not su�cient to overcome the reduction in gV , which

means that unlike for the 2HDM both signal strength deviations for the V V and �� decays

are negative, leading to an (almost linear) correlated suppression. Moreover, we see that

the typical deviations in the signal strengths can be achieved for small values ⇠ < 0.2 in

the MSSM, because quantum e↵ects dominate over the mere tree–level rescaling �V .

A Heuristic for Robustness to Theory Uncertainty One of the great challenges of

the Higgs coupling program is to understand what type of deviation from the Standard

Model prediction would be compelling enough to make a claim for new physics. It is

clear that the pattern of deviations in the various production and decay modes carries

much more information than considering them individually. Furthermore, the inability to

measure the total width of the Higgs necessitates either assumptions on the total width

or consideration of various ratios in which the total width cancels. Both approaches lead

to strong correlations in the inferred couplings. If the theoretical uncertainties were well

defined and statistical in nature, the significance of any given deviation could be readily

assessed by standard statistical methods. However, the ill-defined nature of theoretical

uncertainties is beyond the scope of rigorous statistical procedures.

For example, if one were to see a 4� deviation from the Standard Model that could

be reduced to a 2� deviation by inflating a theoretical uncertainty by a factor of two or

by changing from a Gaussian constraint to an Rfit constraint, then the deviation would

most likely be met with healthy skepticism by the community. However, a deviation that

is orthogonal to the e↵ect of a theoretical uncertainty is much more robust.

This motivates a heuristic to evaluate the robustness of an observed deviation µ̂ to

a theoretical uncertainty parametrized by ↵i, which we denote Ri(µ). We want a larger

deviation from the Standard Model to be reflected as a larger value for this robustness

heuristic, so we begin with the length of the vector |µ � 1|. We also want the robustness

to be larger as the deviation from the Standard Model (µ � 1) becomes more orthogonal

to the shift in the signal strength induced from varying ↵i as defined in Eq.(2.21) and

denoted as @↵i µ
fix. Since the magnitude of the theoretical uncertainty is poorly defined,

it is natural that we only consider the angle between (µ � 1) and @↵i µ
fix. This leads to

the robustness heuristic

Ri(µ) =
|µ� 1|2 |@↵i µ

fix|
(µ� 1) · (@↵i µ

fix)
. (5.9)

This same heuristic can be used to assess an expected departure from the Standard

Model based on a new physics model parametrized by ⇠ via composition Ri(µ(⇠)). Figure 6

shows the heuristic for the new physics e↵ects in Fig. 5 combined with the theoretical

uncertainties in the toy model illustrated in Fig. 2. As expected from the discussion of the

di↵erent models, the di↵erent two–Higgs–doublet models can be distinguished from the
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